
Molybdenum is bioavailable as molybdate (MoO4
2−). Once molybdate 

enters the cell, it is subsequently incorporated by complex biosynthetic 
machineries into metal cofactors1,2. All enzymes that depend on molyb-
denum catalyse redox reactions by taking advantage of the versatile 
redox chemistry of the metal, which is controlled by the cofactor itself 
and the enzyme environment3. Within the enzyme, molybdenum shut-
tles between three oxidation states (+4, +5 and +6), thereby catalysing 
two-electron reduction–oxidation (redox) reactions. In most cases, 
regeneration of the active site involves single-electron steps, resulting 
in a paramagnetic molybdenum intermediate. Molybdenum enzymes 
are found in nearly all organisms, with Saccharomyces as a prominent 
eukaryotic exception4. Many anaerobic archaea and some bacteria are 
molybdenum independent but require tungsten for their growth. Tung-
state, which is 100-fold less abundant than molybdate, is enriched in 
deep-sea hydrothermal vents, reflecting conditions on the primitive 
Earth. Many of the known tungsten-dependent hyperthermophilic 
bacteria and archaea are found in such vents5.

In nature, two very different systems have developed to control the 
redox state and catalytic power of molybdenum, which functions as an 
efficient catalyst in oxygen-transfer reactions. In either case, at least three 
sulphur and two oxygen atoms form ligands to molybdenum (Fig. 1). 
One type of molybdenum cofactor is the iron–sulphur-cluster-based 
iron–molybdenum cofactor (FeMo-co) that is unique to the molyb-
denum nitrogenase6, with one [4Fe–3S] and one [Mo–3Fe–3S] partial 
cubane bridged by three sulphides and one μ6 central atom, X (which 
may be carbon, oxygen or nitrogen)7. The molybdenum of FeMo-co is 
further coordinated by homocitrate (Fig. 1a). The core structure of the 
other type of molybdenum cofactor (Moco) is a pterin-based cofactor 
(molybdopterin or metal-binding pterin (MPT)), with a C6-substituted 
pyrano ring, a terminal phosphate and a unique dithiolate group binding 
molybdenum8. The metal can be attached to one or two pterin moieties 
with additional terminal oxygen and sulphur ligands (Fig. 1c, d). Both 
cofactors are oxygen sensitive and very unstable outside their respective 
apoenzymes.

In this Review, we give a short overview of the different families 
of molybdenum-containing enzymes, focusing on the biosynthetic 

machineries that lead to the ‘biological’ activation of the metal in dif-
ferent molybdenum cofactors.

Molybdenum-dependent enzymes
On the basis of cofactor composition and catalytic function, molybde-
num-dependent enzymes can be grouped into two categories: bacterial 
nitrogenases containing an FeMo-co in the active site, and pterin-based 
molybdenum enzymes. The second category is divided into three fami-
lies, exemplified by sulphite oxidase, xanthine oxidase and dimethyl 
sulphoxide reductase (DMSOR), which each have a distinct active-
site structure3 (Fig. 1). Tungsten-dependent formate dehydrogenase is 
classified as part of the DMSOR family, whereas aldehyde:ferredoxin 
oxidoreductases form a separate family of tungsten-cofactor (W-co) 
containing enzymes found only in archaea. The biochemistry of W-co 
enzymes has been summarized very recently5.

Molybdenum nitrogenase
Nitrogenases provide the biochemical machinery for nucleotide-depend-
ent reduction of dinitrogen (N2) to ammonia (NH3)6. The overall reaction 
catalysed by nitrogenases is usually depicted as N2 + 8H+ + 16MgATP + 
8e− → 2NH3 + H2 + 16MgADP + 16Pi, where Pi denotes an inorganic 
phosphate. This reaction not only represents a major entry point of 
reduced nitrogen into the global nitrogen cycle, but also embodies the 
complex chemistry of breaking the triple bond of N2 under ambient 
conditions (see page 814). Three homologous nitrogenase systems have 
been identified so far9. The best-characterized molybdenum nitrogenase 
is a binary enzyme system comprising two redox-active metalloproteins 
(Fig. 2a). One, designated Fe-protein, is an α2 homodimer with one 
[4Fe–4S] cluster bridged between the subunits and one MgATP-bind-
ing site located in each subunit; the other, termed MoFe-protein, is an 
α2β2 heterotetramer containing two unique metal centres: the P-cluster, 
an [8Fe–7S] cluster that is ligated between each αβ-subunit dimer; and 
the FeMo-co, a [Mo–7Fe–9S–X–homocitrate] cluster (where X may 
be carbon, oxygen or nitrogen) that is buried within each α-subunit7,10 
(Fig. 1a). Catalysis by molybdenum nitrogenase probably involves the 
repeated association and dissociation of Fe-protein and MoFe-protein 

The trace element molybdenum is essential for nearly all organisms and forms the catalytic centre of a large 
variety of enzymes such as nitrogenase, nitrate reductases, sulphite oxidase and xanthine oxidoreductases. 
Nature has developed two scaffolds holding molybdenum in place, the iron–molybdenum cofactor and pterin-
based molybdenum cofactors. Despite the different structures and functions of molybdenum-dependent 
enzymes, there are important similarities, which we highlight here. The biosynthetic pathways leading to 
both types of cofactor have common mechanistic aspects relating to scaffold formation, metal activation 
and cofactor insertion into apoenzymes, and have served as an evolutionary ‘toolbox’ to mediate additional 
cellular functions in eukaryotic metabolism.
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and ATP-dependent transfer of electrons from the [4Fe–4S] cluster of Fe-
protein, through the P-cluster, to the FeMo-co of MoFe-protein, where 
substrate reduction eventually takes place6.

Molybdenum enzymes with a pterin cofactor
More than 50 different pterin-containing molybdenum enzymes 
are known and classified on the basis of the coordination chemistry 
of molybdenum in their active site11–13. All eukaryotic molybdenum 
enzymes belong exclusively to either the sulphite oxidase or the xan-
thine oxidase family with a simple MPT-type cofactor (Fig. 1c, d). They 
differ in the nature of the third Mo–S ligand, which is either provided 
by an enzyme-derived cysteine (sulphite oxidase) or as a terminal sul-
phido ligand (xanthine oxidase). By contrast, members of the DMSOR 
family coordinate molybdenum by two pterin moieties, each carrying 
in addition guanosine monophosphate, which together form a Mo–bis-
MPT guanine dinucleotide cofactor (Mo–bis-MGD; Fig. 1b). Detailed 
mechanistic aspects of all these enzyme families have been discussed 
elsewhere3,12–14.

Members of the DMSOR family are very diverse in reaction, func-
tion and structure11. Whereas DMSOR of Rhodobacter sphaeroides is 
monomeric and lacks other redox centres, DMSOR from Escherichia 
coli is a membrane-bound enzyme composed of three subunits (DmsA, 
DmsB and DmsC) with high similarity to E. coli dissimilatory nitrate 
reductase11 (Fig. 2b). Both represent complex members of this fam-
ily and additionally harbour a [3Fe–4S] cluster in the catalytic Mo–
bis-MGD-containing subunit (NarG), four [4Fe–4S] clusters in the 
electron-transfer subunit (NarH) and a pair of type-b cytochromes in 
the membrane-spanning subunit (NarI), together forming a dimer of 
trimers15. By contrast with the tricyclic pyranopterin structure of Moco 
in all known molybdenum and tungsten enzymes, NarG–NarH–NarI 
shows the presence of an open bicyclic structure in one of the pterins15, 
suggesting a reversible cyclization during catalysis. Most members of 
the DMSOR family function under anaerobic conditions whereby their 

respective cofactors serve as terminal electron acceptors in respiratory 
metabolism.

Animal sulphite oxidase and eukaryotic nitrate reductase are dimeric 
enzymes forming another family of molybdenum enzymes with a high 
degree of structural conservation16,17. In addition to the molybdenum 
domain, they both harbour a cytochrome-b5-type haem domain that 
either receives electrons from the molybdenum centre (sulphite oxidase; 
Fig. 2c) or donates electrons to the molybdenum site (nitrate reductase). 
However, animal sulphite oxidase shuttles electrons derived from sul-
phite oxidation towards cytochrome c, whereas nitrate reductase receives 
electrons needed for nitrate reduction from NADPH. The catalytic cycle 
of sulphite oxidase involves sulphite oxidation coupled to molybdenum 
reduction, followed by two individual electron-transfer steps through 
the cytochrome b5 domain to cytochrome c, a process associated with 
large spatial movements of the sulphite oxidase haem domain13. Sulphite 
oxidases and homologous enzymes are also found in plants and bacteria, 
where they either form a homodimer of two molybdenum subunits 
lacking the haem domain (plants)18,19 or assemble into a heterodimer 
of a single molybdenum- and cytochrome c-containing subunit (bacte-
ria)20. Sulphite dehydrogenase from Starkeya novella is localized in the 
periplasm, whereas plant sulphite oxidase functions in peroxisomes, 
generating H2O2 on transfer of electrons to dioxygen21. Plant, fungal and 
algal nitrate reductases are localized in the cytosol and provide the sec-
ond major entry point for nitrogen into the living world. By comparison 
with sulphite oxidase, nitrate reductase contains an additional carboxy-
terminal FAD domain where either NADH (plant and algae) or NADPH 
(fungi) provides reducing equivalents for nitrate reduction22.

All members of the xanthine oxidase family (also termed molybdenum 
hydroxylases) catalyse hydroxylations of carbon centres (in aldehydes 
and aromatic heterocycles) using oxygen derived from water12. They are 
molybdo-flavoenzymes forming homodimers in eukaryotes with three 
distinct domains in each subunit (Fig. 2d). Xanthine oxidase is the key 
enzyme in purine degradation, catalysing oxidation of hypoxanthine via 

Figure 1 | Molybdenum-containing cofactors. Chemical and three-
dimensional structures of FeMo-co (a), Mo–bis-MGD (b) and the Moco 
from enzymes of the sulphite oxidase (c) and xanthine oxidase (d) families. 
The three-dimensional structures were taken from the crystal structures 

of nitrogenase7, NarG–NarH–NarI15, Pichia pastoris nitrate reductase17 
and bovine xanthine oxidase24. Structures are shown in ball-and-stick 
presentation (Mo, cyan; C, grey; O, red; S, yellow; Fe, brown; N, blue) and 
rendered with PYMOL (http://www.pymol.org/).
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xanthine to uric acid. Electrons derived from substrate hydroxylation are 
transferred through [2Fe–2S] clusters and FAD to either molecular oxygen, 
yielding superoxide anions (xanthine oxidase)12 or NAD+ (xanthine dehy-
drogenase)23. In bacteria, such as Rhodobacter capsulatus, xanthine dehy-
drogenase assembles from two different subunits, harbouring the Moco 
on one subunit and the iron-containing and FAD-containing domains 
on the other subunit and showing a remarkable structural and functional 
similarity to the bovine enzyme24,25. Eukaryotic aldehyde oxidases, which 
are derived from ancient gene duplications of xanthine oxidase, convert 
a wide range of aromatic and non-aromatic aldehydes and function in 
detoxification (animals)26 and hormone synthesis (abscisic acid, plants)27. 
Bacterial members of the xanthine oxidase family contain a mono-MPT 
cytosine dinucleotide cofactor and include aldehyde oxidoreductases28 
and carbon monoxide dehydrogenase29, the latter being characterized by 
a special dinuclear Cu–S–Mo centre. Apart from substrate-dependent 
production of reactive oxygen species, xanthine oxidase and aldehyde 
oxidases show NADH oxidase activity with simultaneous production of 
superoxide30, which has a number of proposed physiological functions in 
the metabolism of reactive oxygen species during stress response23.

Recently a new mitochondria-associated molybdenum enzyme was 
found in mammals31 that promotes reduction of N-hydroxylated ami-
dines in concert with cytochrome b5 and cytochrome b5 reductase, a 
reaction that may be associated with cellular detoxification. It remains 
unclear what molybdenum-enzyme family this enzyme belongs to, but 
its occurrence is widespread, homologues having been found among 
plants and bacteria.

Biosynthesis of FeMo-co
Assembly of nitrogenase FeMo-co is a considerable chemical feat because 
of its complexity and intricacy. Recent progress in the chemical synthesis 
of FeMo-co analogues has provided significant insights into this process32. 
Elucidation of the biosynthesis of FeMo-co, on the other hand, is further 
complicated by the large ensemble of participating gene products1,33. The 
exact functions of these gene products and the precise sequence of events 
in FeMo-co assembly have remained unclear until recently, when the 
characterization of a number of assembly-related intermediates afforded 
a better understanding of this biosynthetic ‘black box’ (Fig. 3).

Formation of the Fe–S core of FeMo-co
Assembly of FeMo-co is probably initiated by NifU and NifS, which 
mobilize iron and sulphur for the assembly of small Fe–S fragments 
(see page 831). NifS is a pyridoxal phosphate-dependent cysteine desul-
phurase and is responsible for the formation of a protein-bound cysteine 
persulphide that is subsequently donated to NifU for the sequential for-
mation of [2Fe–2S] and [4Fe–4S] clusters34,35 (Fig. 3). These small Fe–S 
clusters are then transferred to NifB and further processed into a large 
Fe–S core that possibly contains all the iron and sulphur necessary for 
the generation of a mature cofactor36. The exact function of NifB in this 
process is unclear. Nevertheless, NifB is an indispensable constituent of 
FeMo-co biosynthesis, as deletion of nifB results in the generation of a 
cofactor-deficient MoFe-protein37. Sequence analysis indicates that NifB 
contains a CXXXCXXC (where X is any amino acid) signature motif at 
the amino terminus, which is typical for a family of radical S-adenosyl-
l-methionine (SAM)-dependent enzymes1,38. In addition, there is an 
abundance of potential ligands in the NifB sequence that are available 
to coordinate the entire complement of iron atoms of FeMo-co1. Thus, 
formation of the Fe–S core on NifB may represent a new synthetic route 
to bridged metal clusters that relies on radical chemistry at the SAM 
domain of NifB. For example, NifB could link two [4Fe–4S] subcubanes 
by inserting a sulphur atom along with the central atom, X, thereby 
building a fully complemented Fe–S core that could be rearranged later 
into the core structure of FeMo-co (Fig. 3).

Insertion of molybdenum into the Fe–S core on NifEN
The function of NifEN (NifE–NifN) as a scaffold protein for FeMo-co 
maturation was initially proposed on the basis of a significant degree of 
sequence homology between NifEN and the MoFe-protein, which has 

led to the hypothesis that NifEN contains a ‘P-cluster site’ that houses 
a P-cluster homologue and an ‘FeMo-co site’ that hosts the conversion 
of FeMo-co precursor to a mature cofactor1,33. Whereas the P-cluster 
homologue in NifEN was identified earlier as a [4Fe–4S] cluster33, a 
molybdenum-free precursor of FeMo-co was captured on NifEN only 
recently39. Iron K-edge X-ray absorption spectroscopy reveals that 
this precursor closely resembles the Fe–S core of the mature FeMo-co 
despite slightly elongated interatomic distances40 (Fig. 3). This finding 
implies that, instead of being assembled by the previously postulated 
mechanism that involves the coupling of [4Fe–3S] and [Mo–3Fe–3S] 
subclusters, the FeMo-co is assembled by having the complete Fe–S core 
structure in place before the insertion of molybdenum.

The precursor on NifEN can be converted, in vitro, to a fully comple-
mented FeMo-co on incubation with Fe-protein, MgATP, molybdate 
and homocitrate41. Iron and molybdenum K-edge X-ray absorption 
spectroscopy reveals that the FeMo-co on NifEN is nearly identical in 
structure to the native cofactor in MoFe-protein, except for an asym-
metric coordination of molybdenum that is probably due to the presence 
of a different ligand environment at the molybdenum end of the cofac-
tor in NifEN41. Homocitrate is supplied by NifV (that is, homocitrate 

Figure 2 | Three-dimensional structures of representative members of 
molybdenum-containing enzymes. a, Molybdenum nitrogenase from 
Azotobacter vinelandii17; b, E. coli membrane-bound dissimilatory nitrate 
reductase A (NarG–NarH–NarI)15; c, chicken sulphite oxidase16; d, bovine 
xanthine oxidase24. All enzymes shown operate as dimers of which one half 
is shown as a ribbon diagram with bound cofactors as spheres. For clarity, 
in the other half of the dimer, only the cofactors are shown, highlighting 
their spatial arrangement to maintain intramolecular electron transfer. 
The domain or subunit that binds the molybdenum-containing cofactor is 
rendered in orange. The FeMo-co-containing nitrogenase MoFe-protein 
assembles from two different subunits into a heterotetramer (α2β2). Subunit 
compositions and domain structures are depicted below (DD, dimerization 
domain; FAD, FAD domain; Fe, [2Fe–2S] cluster; H, haem domain; Moco, 
Moco-binding domain). A scale bar 100 residues long is provided beneath c 
to indicate protein size. Structures were rendered with PYMOL and coloured 
as follows: Mo, cyan; C, green; O, red; N, blue; S, yellow; Fe, brown.
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synthase) in vivo42, but molybdenum mobilization within the cell that 
occurs before the intervention of Fe-protein remains a topic of debate43,44. 
Nevertheless, the fact that the cluster is completely converted before its 
exit from NifEN points to Fe-protein having a significant role in FeMo-
co maturation.

Fe-protein re-isolated after incubation with molybdate, homocitrate 
and MgATP is ‘loaded’ with molybdenum and homocitrate that can be 
subsequently inserted into the precursor on NifEN45. The molybdenum 
K-edge X-ray absorption spectrum of the loaded Fe-protein is consis-
tent with a decreased number of Mo=O bonds (two or three instead 
of the four found in molybdate) as well as a decrease in the effective 
oxidation state of molybdenum due to either a change in the formal 
oxidation state of molybdenum or a change in molybdenum ligation. 
Interestingly, the electron paramagnetic resonance spectrum of loaded 
Fe-protein assumes a line shape intermediate between those of the 
MgADP- and MgATP-bound states of the Fe-protein45. This observa-
tion is consistent with that from the initial crystallographic analysis of 
an ADP-bound form of Fe-protein, in which molybdenum is attached at 
a position that corresponds to the γ-phosphate of ATP46. Such an ADP/
molybdenum-binding mode (Fig. 4a) may reflect the initial attachment 
of molybdenum to Fe-protein, particularly when the structural analogy 
between phosphate and molybdate is considered. Remarkably, similar 
nucleotide-assisted processes are proposed for the molybdenum inser-
tion in pterin-based cofactors (see below; Fig. 4b).

Insertion of FeMo-co into apo-MoFe-protein
The completion of FeMo-co assembly on NifEN signals the deliv-
ery of FeMo-co to its destined location in MoFe-protein. The abso-
lute requirement of intermediary FeMo-co carrier(s) between NifEN 
and MoFe-protein was precluded by the observations of unaffected 
nitrogen-fixing activity of the host after deletions of proposed carrier-
encoding gene(s)47 and direct FeMo-co transfer between NifEN and 
MoFe-protein on protein–protein interactions41. Sequence comparison 
between NifEN and MoFe-protein reveals that certain residues that 
either provide a covalent ligand or tightly pack FeMo-co within the 
polypeptide matrix of MoFe-protein are not duplicated in the corre-
sponding NifEN sequence. It is possible, therefore, that the respective 

cluster sites in NifEN and MoFe-protein are brought into close prox-
imity, allowing the subsequent diffusion of FeMo-co from its biosyn-
thetic site in NifEN (low-affinity site) to its binding site in MoFe-protein 
(high-affinity site). On its delivery to MoFe-protein, FeMo-co interacts 
with a number of MoFe-protein residues en route to its target location 
within the protein. Identification of these residues48–50 was assisted by 
the crystallographic analysis of a P-cluster-intact yet FeMo-co-deficient 
form of MoFe-protein, which contains a positively charged funnel in 
the α-subunit that is of sufficient size to accommodate the insertion of 
the negatively charged FeMo-co37.

Biosynthesis of pterin-based molybdenum cofactors
Although widespread in all kingdoms, Moco is synthesized by a con-
served biosynthetic pathway divided into four steps according to 
the biosynthetic intermediates: cyclic pyranopterin monophosphate 
(cPMP), MPT and MPT–AMP. The biosynthetic pathway has been 
summarized in detail2 with particular focus on plants51, bacteria52 and 
humans53, and is believed to be very similar to W-co synthesis52. In 
prokaryotes a final modification by a nucleotide can occur, whereas in 
MPT-type enzymes Moco maturation either involves a terminal sulphu-
ration (xanthine oxidase family) or cysteine ligation to the apoenzyme 
(sulphite oxidase family).

Synthesis of the metal-binding pterin
Biosynthesis starts with the conversion of GTP into cPMP (previously 
identified as precursor Z; ref. 54) catalysed by two proteins: a radical 
SAM enzyme (for example MoaA in bacteria) harbouring two oxy-
gen-sensitive [4Fe–4S] clusters, and an accessory hexameric protein 
involved in pyrophosphate release (for example MoaC in bacteria)55. 
MoaA harbours an N-terminal Fe–S cluster involved in radical SAM 
generation and a MoaA-specific C-terminal Fe–S cluster crucial for 
substrate binding55. Although the reaction mechanism of cPMP syn-
thesis is not yet fully understood, it is well established that each carbon 
of the ribose and purine is incorporated into cPMP55,56. Furthermore, 
the structure of cPMP as a fully reduced pyranopterin with a terminal 
cyclic phosphate and geminal diol (Fig. 5) supports its physicochemical 
properties57. With respect to the observed geminal diol, it remains to be 

Figure 3 | Biosynthesis of FeMo-co. a, Sequence of events during 
FeMo-co assembly. The biosynthetic flow of FeMo-co is NifU–NifS 
→ NifB → NifEN → MoFe-protein. The combined action of NifU–NifS 
generates small Fe–S fragments on NifU (stages 1 and 2), which are used 
as building blocks for the formation of a large Fe–S core on NifB (stage 3). 
This Fe–S core is further processed into a molybdenum-free precursor 
(stage 4), which can be converted to a mature FeMo-co on NifEN on 
Fe-protein-mediated insertion of molybdenum and homocitrate (stage 5). 
After the completion of FeMo-co assembly on NifEN, FeMo-co is delivered 
to its destined location in MoFe-protein (stage 6). The permanent metal 

centres of the scaffold proteins are coloured pink; the transient cluster 
intermediates are coloured yellow. HC, homocitrate. b, Structures of 
intermediates during FeMo-co assembly. Shown are the cluster types that 
have been identified (on NifU, NifEN and MoFe-protein) or proposed (for 
NifB). Hypothetically, NifB could bridge two [4Fe–4S] clusters by inserting 
a sulphur atom along with the central atom, X, thereby generating an Fe–S 
scaffold that could be rearranged into a precursor closely resembling the 
core structure of the mature FeMo-co. In the case of the NifEN-associated 
precursor, only the 8Fe model is shown. The potential presence of X in the 
intermediates of FeMo-co biosynthesis is indicated by a question mark.
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determined at which point interconversion into a keto function takes 
place58. The functions of MoaA and MoaC are conserved throughout 
evolution, as eukaryotic orthologues are able to restore Moco biosyn-
thesis in bacteria59.

To form the MPT dithiolate, two sulphur atoms are incorporated 
into cPMP by MPT synthase, a heterotetrameric complex of two small 
(MoaD in E. coli) and two large (MoaE in E. coli) subunits. MoaD car-
ries a sulphur atom as thiocarboxylate at the conserved C-terminal 
double-glycine motif60, which is deeply buried in the large subunit to 
form the active site61. As one sulphur atom is bound per small subunit, 
a two-step mechanism for MPT dithiolate synthesis with the formation 
of a singly sulphurated intermediate has been demonstrated62. MPT 
synthase homologues in higher eukaryotes have been identified and 
characterized2. The expression of human MPT synthase is unusual, as 
both subunits are encoded by a bicistronic messenger RNA63.

In a separate reaction, sulphur is transferred to the small subunit of 
MPT synthase (Fig. 5). For this, in E. coli MoeB catalyses the adenylyla-
tion of the C-terminal glycine residue of MoaD64 in a process that is 
notably similar to the action of the ubiquitin-activating enzyme Uba165. 
Together with MoaD, which has a ubiquitin-like fold, MPT synthase 

provides an evolutionary origin for ubiquitin-like protein conjugation. 
AMP-activated MoaD becomes sulphurated by sulphide transfer, which 
is catalysed by a cysteine desulfurase66 and a rhodanese67; the latter is 
fused in eukaryotes, as the C-terminal domain, to an MoeB-homologous 
domain68.

Metal insertion and nucleotide attachment
On completion of MPT synthesis, the metal is transferred by a multistep 
reaction. Whereas E. coli encodes two separate proteins involved in this 
step, eukaryotes catalyse metal transfer by homologous two-domain 
proteins, such as Cnx1 (plants) and gephyrin (human) (Fig. 5), point-
ing to a functional cooperation between their domains. The physio-
logical functions of their domains were discovered by determining 
the crystal structure of the N-terminal G domain of Cnx1 in complex 
with substrate and product69. The latter was found to be MPT–AMP, 
a common intermediate in bacterial and eukaryotic Moco synthesis70 
synthesized by G domains and homologous proteins (MogA in bacte-
ria)71. Subsequently, a transfer of MPT–AMP to the E domain in Cnx1 
was demonstrated72. In the presence of divalent cations and molybdate, 
bound MPT–AMP is hydrolysed and molybdenum is transferred to the 
MPT dithiolate, resulting in Moco release. This Moco most probably 
carries two oxo ligands and one OH group depicted (Figs 4a and 5) in 
a deprotonated form72, as supported by preliminary spectroscopic data 
derived from a storage-protein-bound Moco (see below; G.S., unpub-
lished observation). There is no experimental evidence for a reduction 
of molybdenum at this state.

W-co biosynthesis is believed to be conserved up to MPT formation5, 
with differences in metal transfer. The tungsten-dependent archaeon 
Pyrococcus furiosus and related thermophiles lack mogA; instead, they all 
express genes encoding an MoaB-like protein, which also catalyses MPT 
adenylylation, confirming MPT–AMP as an essential and general pre-
requisite before metal insertion73. Furthermore, P. furiosus expresses two 
different MoeA-like proteins, suggesting metal-selective activities5.

Finally, enzymes of the DMSOR family need to be further modified 
by the attachment of a nucleotide molecule (Fig. 5), a reaction depen-
dent on the preceding metal insertion72. In E. coli, MobA catalyses the 
conversion of MPT and GTP to Mo–bis-MGD74. Interaction studies 
with proteins catalysing metal insertion and Mo–bis-MGD formation 
identified a transient Moco-synthesizing machinery comprising MogA, 
MoeA, MobA and molybdenum-enzyme-specific chaperones75.

Cofactor maturation, storage and transfer
Molybdenum hydroxylases such as aldehyde oxidase and xanthine 
oxidase require a final step of maturation to gain enzymatic activity, 
namely the addition of a terminal sulphido ligand to the molybde-
num centre, which is catalysed by a Moco sulphurase (that is, Aba3 in 
plants or HMCS (also known as MOCOS) in humans), a two-domain 
protein76 acting as a homodimer (Fig. 6). In a pyridoxal phosphate-
dependent manner, the N-terminal NifS-like domain abstracts sulphur 
from l-cysteine and forms a persulphide intermediate on a conserved 
cysteine residue77. Subsequently this sulphur is transferred via a sec-
ond cysteine persulphide intermediate to bound Moco. Both of these 
steps are catalysed by the C-terminal Moco-binding domain of Aba3 
(ref. 78), which selectively stabilizes sulphurated Moco. The same 
mechanism operates in HMCS (R.R.M., unpublished observations). 
Among prokaryotes, no homologues to eukaryotic Moco sulphurases 
have been found. However, for xanthine dehydrogenase from R. cap-
sulatus, its enzyme-specific chaperone XdhC was found to fulfil Moco 
sulphuration79. By contrast with enzymes of the xanthine oxidase fam-
ily, sulphite oxidase and nitrate reductase incorporate Moco without 
further modification. The proposed tri-oxo coordination of molybde-
num in mature Moco72 (Figs 4b and 5) suggests a simple mechanism 
of cysteine ligation to the molybdenum accompanied by loss of one of 
the oxygens as water.

As Moco is highly unstable once liberated from proteins, it was assumed 
that Moco does not occur in a ‘free state’; rather, Moco might be bound to a 
carrier protein that protects and stores it until further use. Whereas some 

Figure 4 | Proposed mechanisms for molybdate activation in FeMo-co and 
Moco biosynthesis. a, For FeMo-co synthesis, in a MgATP-dependent 
process Fe-protein (stage 1) reduces molybdenum from a more oxidized 
state, such as molybdate (Moox), to a more reduced state (Mored). Mored 
probably occupies the position of the γ-phosphate of MgATP (stage 2), 
which is released on ATP hydrolysis. Subsequently, Mored, in complex 
with homocitrate, can be inserted into the FeMo-co precursor, resulting 
in the formation of a mature FeMo-co on NifEN. b, In Moco biosynthesis, 
adenylylated MPT (MPT–AMP) and molybdate bind first in a cooperative 
manner to the Cnx1E domain (stage 1); subsequently, Zn2+ or Mg2+ 
promotes hydrolysis of the pyrophosphate bond in MPT–AMP. Stage 2 
depicts the formation of a hypothetical reaction intermediate (adenylylated 
molybdate), which is thought to represent an unstable transition state that 
will immediately react with MPT, thus replacing bound copper at the MPT 
dithiolate (stage 3). The function of copper is still unknown, and it remains 
unclear whether molybdenum insertion is dependent on copper. According 
to the coordination of adenylylated molybdate, as well as the required 
modification of Moco in molybdenum enzymes of the sulphite oxidase 
and xanthine oxidase families (cysteine binding or sulphuration), released 
Moco is proposed to carry three oxo ligands.
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bacteria have molybdate-binding proteins such 
as Mop80, the alga Chlamydomonas reinhardtii 
produces a homotetrameric protein81 that holds 
four Moco molecules in a surface-exposed bind-
ing pocket82. In higher plants, gene families with 
8–12 homologous Moco-binding proteins have 
been discovered recently (R.R.M., unpublished 
observations). It is still unclear whether these 
proteins represent a buffer in which to store 
Moco or whether they are part of the default 
pathway for Moco allocation and insertion into 
molybdenum enzymes, a mechanism poorly 
understood in eukaryotes. Because Moco is 
deeply buried within the holoenzymes, it needs 
to be incorporated before the completion of fold-
ing and oligomerization of enzyme subunits/
domains; for this, many bacterial molybdenum 
enzymes require the presence of chaperones, 
such as NarJ for E. coli nitrate reductase, TorD 
for trimethylamine N-oxide reductase and 
DmsD for DMSOR, which bind and protect 
the apoenzymes, assist in cofactor insertion and 
control transmembrane targeting83.

Molybdenum homeostasis and disorders
Cellular uptake
Bacterial molybdenum uptake requires spe-
cific systems to scavenge molybdate in the 
presence of competing anions. This involves 
a high-affinity ATP-binding cassette (ABC) 
transporter: molybdate is captured by one 
component, a periplasmic molybdate-binding 
protein (ModA), and transferred to another, 
the transmembrane channel (ModB). The 
crystal structure of an ABC transporter from 
Archaeoglobus fulgidus84 suggests a conserved 
two-state mechanism by which ATP hydrolysis 
and the release of ADP plus Pi at the cytoplas-
mic protein (ModC) controls conformation 
of the transmembrane protein, ModB. For 
tungstate, two ABC-type transporters, TupA–
TupB–TupC and WtpA–WtpB–WtpC, have 
been identified73, the latter being highly selec-
tive for tungstate over molybdate owing to a 
unique octahedral substrate coordination85.

Algae and multicellular plants are the only 
eukaryotes for which the molybdate-uptake 
mechanisms have been recently determined. 
Two proteins belonging to the large sulphate-
carrier family have been shown to transport 
molybdate with high affinity86–88. Unexpect-
edly, none of them was found to reside in the 
plasma membrane. Contradictory reports 
localized them to the endomembrane system86 
or the mitochondrial envelope88. It is likely that 
additional transporters, not only in autotrophs 
but also in animals, will be discovered soon.

Molybdenum–iron and –copper crosstalk
Molybdenum metabolism is strictly depend-
ent on iron metabolism at different levels. 
FeMo-co biosynthesis and nitrogenase matu-
ration are based on the synthesis of complex 
Fe–S clusters, and enzymes participating in 
the first step of Moco biosynthesis contain two 
[4Fe–4S] clusters55. Furthermore, all molyb-
denum hydroxylases and several members 

Figure 5 | Biosynthesis of the pyranopterin-based molybdenum cofactors. Shown is a generalized 
scheme of the pathway based on data derived from studies in E. coli, plants and humans. All known/
characterized intermediates of the pathway are presented sequentially in the four steps in which Moco is 
synthesized. A fifth step present only in prokaryotes results in the formation of Mo–bis-MGD. Proposed 
(first step)55 or partially characterized (second step) intermediates62 are indicated in parentheses (circled 
P, phosphate group). The intermediate of the second step has been suggested on the basis of mechanistic 
studies of MPT synthase yielding an intermediate with a linear phosphate62. Proteins catalysing the 
individual steps are depicted in different colours, and a similar shade is applied to domains/proteins 
involved in nucleotide transfer. Homologous proteins from E. coli (‘Mo’ nomenclature), humans (‘MOCS’ 
nomenclature except gephyrin) and plants (‘Cnx’ nomenclature) are shown for comparison. The separate 
pathway regenerating MPT synthase is grouped within the grey box. For simplicity, only the MoeB 
protein is shown. We note that eukaryotes express fusion proteins that contain a MoeB domain and a 
C-terminal rhodanese-like domain involved in sulphur transfer to the small subunit of MPT synthase. 
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of the DMSOR family use Fe–S clusters for intramolecular electron 
transfer. Finally, enzymes of the sulphite oxidase family contain haem 
cofactors.

Recently, another link between the metabolic pathways of molybde-
num and iron was discovered. In plants (and most probably also in ani-
mals), enzymes catalysing cPMP synthesis, such as Cnx2 and Cnx3, were 
localized within the mitochondrial matrix (R.R.M., unpublished obser-
vations), which necessitates the export of cPMP from mitochondria into 
the cytosol. Here, the mitochondrial ABC-type transporter Atm3 (also 
known as Sta1) from A. thaliana seems to fulfil a dual function: it not only 
exports Fe–S-cluster precursors to the cytosol89, but it is somehow also 
involved in cPMP translocation. Atm3-deficient plants showed defects 
in Fe–S-dependent cytosolic enzymes and accumulated large amounts 
of cPMP in mitochondria; consequently, activities of all molybdenum 
enzymes were strongly reduced (R.R.M., unpublished observations).

Only a few cases and conditions of limited molybdate availability have 
been reported so far5,90. Among these, the shortage of molybdenum in 
Australian farmland triggered excessive fertilization, resulting in molyb-
denum overload of the soil that caused pathological symptoms of molyb-
denosis in animals; this, in particular in ruminants, triggered secondary 
copper deficiency91. Later, these molybdenum-induced conditions of 
copper deficiency revealed the pathology of two copper-homeostasis 
disorders: Menkes disease (copper deficiency) and Wilson’s disease 
(copper overload)92 (see page 823). Consequently, potent copper chela-
tors such as tetrathiomolybdates were used to treat Wilson’s disease and 
a number of other disorders that are linked to copper homeostasis, such 
as neurodegeneration, cancer and inflammation93.

Another antagonism between molybdenum and copper has been 
found recently. The crystal structure of Cnx1G, which catalyses MPT 
adenylylation, revealed the presence of a covalently bound copper ion 
(most probably Cu1+) at the MPT dithiolate in both the substrate- and 
product-bound states69. The function of copper during Moco biosyn-
thesis is still unknown. It may participate in the sulphur-transfer reac-
tion enabled by MPT synthase, act as a protecting group for MPT and/
or function within molybdenum insertion72. In vitro studies suggested 
a competition between copper and molybdenum during Moco forma-
tion69, ultimately raising the question of whether Moco biosynthesis 
might be affected under conditions of copper overload or deficiency92.

Molybdenum cofactor deficiency
Human Moco deficiency (MoCD) results in the complete loss of sul-
phite oxidase, xanthine oxidase and aldehyde oxidase activity. Patients 

diagnosed with MoCD are classified into three groups according to 
the affected steps within the biosynthetic pathway (Fig. 7a). They are 
characterized by progressive neurological damage, leading to early 
childhood death in most cases94. Symptoms are mainly caused by the 
deficiency of sulphite oxidase protecting the organs (in particular the 
brain) from elevated concentrations of toxic sulphite.

The function of sulphite oxidase is important, as it represents the last 
step in the oxidative degradation of sulphur-containing amino acids and 
lipids. Mainly in liver, sequential events in cysteine catabolism through 
cysteine sulphinate (cytosol) and β-sulphinyl pyruvate (mitochondria) 
lead to the formation of sulphite (Fig. 7b). Sulphite oxidase, localized in 
the intermembrane space, oxidizes sulphite to sulphate. Under condi-
tions of Moco or sulphite oxidase deficiency, sulphite accumulates in 
plasma and serum, crosses the blood–brain barrier and rapidly triggers 
neuronal death94. Impaired ATP synthesis has been suggested as one 
possible mechanism of sulphite toxicity95. Sulphite accumulation also 
triggers the reduction of cystine (Fig. 7b), the main carrier for cysteine 
in serum and plasma, which consequently causes the formation of S-sul-
phocysteine94 (Fig. 7b), a potential agonist of glutamate receptors96. The 
latter may explain the observed seizures, convulsions, contractions and 
twitching associated with MoCD, causing damage of cortical neurons 
as documented by abnormal magnetic resonance imaging of the brain 
and loss of white matter94.

To study MoCD, an animal model with Mocs1 knockout has been con-
structed97. Homozygous mice displayed a severe phenotype that reflects 
all biochemical characteristics of human Moco-deficient patients. 
They failed to thrive, and died within the first 12 days of life. The lethal 

Figure 6 | Domain structure and function of Moco sulphurase Aba3 from 
Arabidopsis thaliana. The Aba3 protein and other homologues act as 
dimers catalysing the sulphuration of Moco, a reaction needed for the 
activation of molybdenum hydroxylases. Each Aba3 monomer can be 
divided into two domains, an N-terminal domain showing sequence 
homology to cysteine desulphurases (NifS-like enzymes) and a C-terminal 
domain that binds Moco. Recently, it was shown that a persulphide sulphur 
generated by the NifS-like domain is transferred to the C-terminal domain 
for the conversion of bound desulpho-Moco into sulphurated Moco, which 
is subsequently required to activate the target enzymes of Aba3 (that is, 
xanthine dehydrogenase and aldehyde oxidase). PLP, pyridoxal phosphate.

Figure 7 | Human Moco deficiency. a, Classification of Moco-deficient 
patients53 according to the three distinguishable steps in human Moco 
biosynthesis. Genes encoding proteins catalysing the individual steps 
are shown. Type-A patients cannot form cPMP, whereas type-B patients 
accumulate cPMP, which is excreted in the urine. So far, only one type-C patient 
has been described, with a deletion of gephyrin due to an early stop codon in 
the gephyrin gene99,100, a protein also needed for the formation of inhibitory 
synapses. b, Degradation pathway of methionine and cysteine. Catabolic 
intermediates are depicted and metabolites that accumulate in Moco-deficient 
patients owing to increased sulphite concentrations are S-sulphocysteine, 
thiosulphate and taurine. Simultaneously, cystine concentrations are 
very low. S-Sulphocysteine is thought to make a major contribution to 
neurodegeneration because of its structural similarity to glutamate. We note 
that sulphite is formed from spontaneous decomposition of β-sulphinyl 
pyruvate. Sulphite crosses the mitochondrial inner membrane and is oxidized 
in the intermembrane space by molybdenum-dependent sulphite oxidase.
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phenotype could be effectively neutralized by repeated injection 
of cPMP, which was purified from E. coli98. Mice treated with cPMP 
developed normally, gained weight and reached adulthood and fertil-
ity like their wild-type littermates. Notably, withdrawal of cPMP from 
Mocs1-knockout mice caused death within 10–14 days. These prom-
ising results were verified by a recent clinical trial (G.S., unpublished 
observations).

Conclusion
The versatile redox chemistry of molybdenum is mirrored by the 
plethora and complexity of enzymes using molybdenum and, to some 
extent, tungsten. Nature has developed two very different systems to 
control the redox state and catalytic power of molybdenum. Although 
the contribution of each cofactor scaffold to the overall chemistry of a 
given enzyme requires further investigation, it is likely that the various 
scaffolds represent pathways generating sulphur-containing chelators 
that can trap, activate and control the transition elements as catalysts.

Future research in the field of molybdenum enzymes is likely to focus 
on the mechanistic details of cofactor biosynthesis, cofactor allocation 
and the functions of cofactors in particular enzymes. Further under-
standing of the differences between molybdenum and tungsten bio-
chemistry will help to explain the unique presence of molybdenum in 
eukaryotes and to answer fundamental questions regarding functional 
specificity, metal selectivity, regulation, allocation, compartmentaliza-
tion and assembly of this fascinating family of enzymes and cofactors.

As seen for both FeMo-co and Moco biosynthesis, different assembly 
machineries can use similar mechanisms, such as the radical SAM-based 
chemistry and the nucleotide-assisted molybdenum activation, which 
are employed for the synthesis of both cofactors. The role of molybde-
num in other homeostatic circuits, such as copper and iron metabolism, 
awaits further investigation, which could address questions regarding 
the pathophysiology of related metabolic disorders. Finally, the bio-
synthetic machineries of these cofactors or the enzymes themselves 
(for example nitrogenase) are ancient natural inventions. Some of the 
proteins are precursors of those with specialized functions in eukary-
otes, such as ubiquitin-like protein conjugation (MPT synthesis)64 and 
G-protein-based signalling3; others, such as gephyrin, which is crucial 
for synaptogenesis99, have gathered additional functions. ■
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